Problem 5

What about the PDE

$$
\frac{\partial^{2} u(x, y)}{\partial x \partial y}=0
$$

Can you find all solutions $u(x, y)$ to this equation? (How many are there?) How does this compare with an ODE like

$$
\frac{d^{2} y}{d x^{2}}=0
$$

insofar as the number of solutions is concerned?

Solution

$$
\frac{\partial}{\partial x}\left[\frac{\partial u(x, y)}{\partial y}\right]=0
$$

Integrate both sides partially with respect to x to undo the partial derivative on the left side.

$$
\int^{x} \frac{\partial}{\partial x^{\prime}}\left[\frac{\partial u\left(x^{\prime}, y\right)}{\partial y}\right] d x^{\prime}=\int^{x} 0 d x^{\prime}
$$

Use the fundamental theorem of calculus on the left. Evaluate the integral on the right.

$$
\frac{\partial u(x, y)}{\partial y}=0+f(y)
$$

Integrate both sides partially with respect to y to undo the partial derivative on the left side.

$$
\int^{y} \frac{\partial u\left(x, y^{\prime}\right)}{\partial y^{\prime}} d y^{\prime}=\int^{y} f\left(y^{\prime}\right) d y^{\prime}
$$

Since f is an arbitrary function, its antiderivative is another arbitrary function F.

$$
u(x, y)=F(y)+g(x)
$$

Here g is another arbitrary function. There are infinitely many solutions for u, for example,

$$
u(x, y)=x+y \quad u(x, y)=\sin x+e^{y} \quad u(x, y)=\frac{\cos (\sqrt{x})+\sin \left(e^{x}\right)}{\sinh x}+\ln y
$$

To solve

$$
\frac{d^{2} y}{d x^{2}}=0
$$

integrate both sides with respect to x once.

$$
\frac{d y}{d x}=C_{1}
$$

Integrate both sides with respect to x again.

$$
y(x)=C_{1} x+C_{2}
$$

Although there are infinitely many solutions for y as well, the functional form (a line) is fixed.

$$
y(x)=x+1 \quad y(x)=2 x-5 \quad y(x)=16 x-4.13
$$

